
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Mean Free Path Effects in the Dielectric Function of a Liquid Metal
N. H. Marchab; B. V. Paranjapec

a Theoretical Chemistry Department, University of Oxford, Oxford, England b Department of Physics,
University of Alberta, Edmonton c Department of Physics, University of Alberta, Edmonton, Alberta,
Canada

To cite this Article March, N. H. and Paranjape, B. V.(1987) 'Mean Free Path Effects in the Dielectric Function of a Liquid
Metal', Physics and Chemistry of Liquids, 17: 1, 55 — 71
To link to this Article: DOI: 10.1080/00319108708078541
URL: http://dx.doi.org/10.1080/00319108708078541

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319108708078541
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Phys .  Chem. Liq., 1987, Vol. 17, pp. 55-71 
Photocopying permitted by license only 
0 1987 Gordon and Breach Science Publishers Inc. 
Printed in the United Kingdom 

Mean Free Path Effects 
in the Dielectric Function 
of a Liquid Metal 
N. H. MARCH* 

Theoretical Chemistry Department, University of Oxford, 
1 South Parks Road, Oxford, OX1 3TG, England. 

and 

B. V. PARANJAPE 
Department of Physics, University of Alberta, 
Edmonton, Alberta, Canada, T6G 2Jl. 

(Received 12 January 1987) 

Mean free path effects are introduced into the frequency and wavenumber dependent 
dielectric function c(q ,  w) of a simple liquid metal such as Na. It is pointed out that, at 
least in principle, &,0) can be brought into contact with experiment through (a) 
electrical resistivity and (b) effective ion-ion interactions. 

The frequency dependence of t (q,  w) is then considered, using the Lindhard expression 
as a starting point. This is shown to link the real parts of the dielectric function c(q, w )  and 
the conductivity u(q,w) via a function dependent on Fermi surface blurring. The 
frequency dependence of this function is determined in the long wavelength limit, and 
contact with the Drude-Zener theory is established. 

Finally, the long wavelength form of c(q, w) is related to plasmon properties of liquid 
metals and to the ion-ion dynamical structure factor. 

Key words: Mean free path effects, liquid metal, dielectric function. 

1 INTRODUCTION 

In liquid metals the electronic mean free path 1 is finite and this implies, 
via the Uncertainty Principle, that there is a blurring of the Fermi 
surface, Akf say, according to 

lAkf - 1. (1.1) 

* Much of this work was completed while on leave at the University of 
Alberta, Department of Physics, Edmonton. 
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56 N. H. MARCH AND B. V. PARANJAPE 

This fact has been utilized by Ferraz and March’ in their generalization 
of the nearly free electron theory of the electrical resistivity of liquid 
metals. 

The aim of the present work is to study in some detail the effect of 
such Fermi surface blurring on the frequency and wavenumber depen- 
dent dielectric function t(q, o) of a simple liquid metal. To introduce the 
discussion, we summarize in Section 2 below the main results of 
Leavens et aL2 for c ( q , O )  and point out that, in addition to electrical 
resistivity already referred to, the effective pair interaction between ions 
is to be expected to reflect more directly mean free path effects in the 
static dielectric function of the liquid metal. 

In Section 3 we set out the present approach to the frequency 
dependence of t(q, 0); the Lindhard formula being taken as starting 
point, as in the earlier work of Mermin3 and of Gotze4. However, the 
major departure from their methods is that we introduce Fermi surface 
blurring directly through the Lindhard expression. The resulting theory 
is then worked out in some detail for small 4 in Section 4, while Section 
5 makes contact with the dynamical structure factor of the ions. Section 
6 discusses the relation to experiment further. 

2 STATIC DIELECTRIC FUNCTION 

Following Leavens et al.’, the real part of the generalized Lindhard 
dielectric function, with introduction of a finite mean free path I ,  is given 
by 

where f ( q ,  I )  is given by 

from which one recovers the Lindhard dielectric function in the limit 
1 + C O .  
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DIELECTRIC FUNCTION OF A LIQUID METAL 57 

2.1 

Leavens et ul.' include the effects of exchange and correlation in an 
approximate manner by replacing f (q ,  I )  in Eq. (2.1) by the function 

Approximate inclusion of exchange and correlation 

where A = ( m , k f ) - ' .  In the large 1 limit, Taylor' has shown that this 
dielectric function is a good approximation to that of Geldart and 
Taylor6. With the seemingly reasonable assumption that the mean free 
path changes local field effects in a minor fashion, Eq. (2.3) represents 
an obvious generalization of Eq. (2.2). 

Figures 1 and 2 show how finite free path effects influence the static 
dielectric function c l (q) ,  without and with exchange and correlation. 

0 - 7 5 -  

f 0.50-  

0 .25-  

0 . 0 0  I I I I I 

0 .o  0 - 5  1 .o  1 .5  2 .o 

Figure 1 Shows influence of finite mean free path on the static dielectric function c , (q )  

Quantity actually plotted is f in Eq. (2.2), as a function of the variable q/k , ,  for the 
according to Eqs (2.1) and (2.2). 

values of the mean free path I ,  corresponding to: 
Curve I: k,l = lo00 
Curve 11: k ,  I = 30 
Curve 111: k,l = 10 
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58 N. H. MARCH AND B. V. PARANJAPE 

F 5  

2 

0 

W k ,  

Figure 2 Shows influence of exchange and correlation on the static dielectric function 
d q ) .  

Quantity actually plotted is F in Eq. (2.3) as a function of the variable qlk,, two 
values of I, namely 0.7 and 0.8, and for three values of i for each 1, the I values being as 
in Figure 1. Top three curves correspond to I = 0.08. 

It should be noted that the choices of 1 correspond to strong exchange and 
correlation interactions: in normal applications of the formula (2.3), the effect of these 
interactions will be substantially less. 

2.2 Application to ion-ion pair potentials 

One test of the static form (2.1) of tl(q, I) could be made through the 
fact that in nearly free electron metals the ion-ion pair potential 4ii(r)  
involves' 

where U,(q) is the bare ion pseudopotential. Since I is expected to vary 
with temperature, and this integral is known to be sensitive to tl(q, I )  it 
may be that there will be significant variation of 4ii(r) with temperature. 
This application is currently of interest because of the successful 
inversion of the static structure factor S(q)  near the melting point of Na 
to extract cbii(r) for this liquid metal*; so far, however, only at the 
melting temperature. 

Other tests of cl(q, I) may be feasible: for instance divalent impurity 
excess resistivity in liquid Na, but to date the measurements needed for 
comparison do not seem to be available. 
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DIELECTRIC FUNCTION OF A LIQUID METAL 59 

We turn next therefore to consider the frequency-dependent dielec- 
tric function 4 4 , ~ ) .  

3 CONSEQUENCES O F  LINDHARD FORM, WITH 
FERMl SURFACE BLURRING, O F  t ( 9 , ~ )  

We now assume that Fermi surface blurring can be introduced into 
c(q, w )  of a liquid metal by exploiting the structure of the Lindhard form 
of the dielectric function’, namely 

where 

(3.1) 

We note that if Fermi surface blurring is introduced via the occupation 
probabilities A, then one ought, to be consistent, to have a finite 
relaxation time T in the denominator, Boltzmann’s transport equation 
yielding the appropriate modification as in Eq. (3.2); i.e. replacing o by 
(o + i /T ) .  

Forming the real and imaginary parts of H(q, w )  in Eq. (3.2) we find 

and 

An immediate consequence of Eqs (3.3) and (3.4) is that the summation 
involving ho in the numerator of Eq. (3.3) can be expressed in terms of 
Im H to yield 

(3.5) Re H = F(q, o) - WT Im H 
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60 N. H. MARCH AND B. V. PARANJAPE 

where F(q, w )  is given by 

Combining Eqs (3.1) and (3.5) with the general relation between 
c(q, w )  and the conductivity a(q, w): 

4nia(q, 0) 
E ( q ,  w )  = 1 + 

w 

we have 

and 

From Eq. (3.1) we find 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

and 

(3.1 1) 

Substituting in Eq. (3.5) after multiplying that equation by 4ne2/q2 
yields 

(3.12) 

Of course, to put further physical content into Eq. (3.12) one must 
input energy levels and Fermi surface blurring into Eq. (3.6). However 
we shall see in Section 4 below in the small q or long wavelength regime 
that F(4, w )  must reflect the dynamical structure factor of the ions in the 
liquid metal. To introduce this limit q -+ 0, let us note from Eq. (3.12) 
that 

4ne2 
~ ~ ( 0 ,  w )  - 1 = lim F(q,  w)  + 4nra1(0, w )  (3.13) 

= fi(0) 4- 411Ta1(0,0) (3.14) 

q’o 4 
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DIELECTRIC FUNCTION OF A LIQUID METAL 61 

where the latter equation evidently defines fi(w). It is a straightforward 
matter to show that the Drude-Zener model: 

g0 o(w) = ___ 
I - iwr’ 

(3.15) 

with no the D.C. conductivity, corresponds to fl(w) = 0. Of course, one 
must not assume that consistently with the Drude-Zener model, F(q ,  w )  
in Eq. (3.12) is zero; only that the limit q -+ 0 in Eq. (3.13) yields zero in 
this model. By direct evaluation of the small q limit in Eq. (3.6), we shall 
obtain in Section 4 an expression for f (w )  in terms of a form of fk 

consistent with Fermi surface blurring. 
One final comment worth making here is that one could introduce 

t + t(w) into Eq. (3.2) and Eq. (3.12) would still follow as a conse- 
quence, with t in that equation and in Eq. (3.6) now being w-dependent. 
But, of course, the justification for such a substitution into Eq. (3.2) 
would require transcending the Boltzmann transport equation argu- 
ment given above. We shall return to this point in Section 5, when we 
consider the consequence of a two-component theory (electrons and 
ions) following the work of Tosi et al.’ 

4 LONG WAVELENGTH EVALUATION OF t ( 4 . w )  

This is the point at which we must consider in detail the evaluation of 
F(q, o) in Eq. (3.6) in the long wavelength or small q limit. Then plainly 
in this limit q + 0, we can put t k + q  - ck in the denominator equal to 
zero, to obtain first of all 

To find the small q limit, we Taylor expand both factors in the 
numerator to lowest order in q. Then, with p = cos 8,8 being the angle 
between k and q, we find to lowest order 

P.C.L. E 
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62 N. H. MARCH AND B. V. PARANJAPE 

where the isotropy of the liquid metal has been employed in the form 
ck = L(lk1). Hence, the function f l ( w )  in Eq. (3.14) is given by 

This shows clearly that while the frequency dependence of f(o) is quite 
explicit, the magnitude depends on the detailed nature of the Fermi 
surface blurring through the function df@, as well as on any depar- 
tures of the t(k) relation from the free-electron form t(k) = h2k2/2m. 

In fact, the above integral now has an explicit limiting value as the 
Fermi surface blurring tends to zero, when it can be expressed in terms 
of the density of states at the Fermi surface. However, in real liquid 
metals, following the work of Refs 1 and 2, we must expect the blurring 
defined by af /at to be a function of the relaxation time t. In turn, in a 
liquid metal, the mean free path I, and hence t must be expected to be 
temperature dependent. The conclusion of the above argument is that, 
with n the electron density, 

(4.4) 

where the function h can plainly be calculated from Eq. (4.3) given 
models of df/dc and c(k).  We stress, however, that the frequency- 
dependence of fi(o) in the present model is explicit and of Drude 
-Zener form. 

In Section 6, we test Eq. (3.14), with f(o) given by Eq. (4.4), using 
experimental data on c , (O ,  w )  and a,(O, w )  for liquid Na. 

5 REAL PART OF A.C. CONDUCTIVITY IN TERMS OF 
DYNAMICAL STRUCTURE OF IONS 

Tosi et aE.' (see also Hinkelmann'') show that for a liquid metal: 

m2m2w 1 mi m,Z 
Re cre(O, w )  = ___ [l - e-8"l lim Sii(q, o) - 6(w) (5.1) 

m,2 q-to 4 me 

where 

fJe(O, 0) = a(0, w)/t(O, w),  (5.2) 
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DIELECTRIC FUNCTION OF A LIQUID METAL 63 

S,,(q, w )  is the dynamical structure factor of the ions, of number density 
ni. Using Eq. (3.7) one finds 

Writing 

and 

1 
lim I Sii(q, w )  = [ T(w)] - 
q'o 4 

one obtains from Eqs (5.1) and (5.3) 

~ a: - gTo, + L:. = 0, 1 6x2 
U2 

with solution near the plasma frequency, where tl -+ 0: 

(5.4) 

(5 .5 )  

Generally the solution of the quadratic (5.6) can be written 

which reduces to Eq. (5.7) as c1 + 0. 
Equation (5.6) can, alternatively, be used to gain information on the 

dynamical structure factor as reflected by T(o) in Eq. ( 5 3 ,  in frequency 
regimes away from w = O  where al(o) and tl(co) are known from 
experiment. This route is considered by using experimental data for 
liquid Na in Section 6 below. 

6 SOME POINTS OF CONTACT WITH EXPERIMENT 

In this section, we shall attempt to bring the theory outlined above into 
contact with experiment. We shall begin by considering the prediction 
made in Eqs (3.14) and (4.4). 
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64 N. H. MARCH AND B. V. PARANJAPE 

6.1 

The data on the optical constants n and k of liquid Na obtained by 
Inagaki et a/." has been utilized to test the form of Eq. (3.14), with 
f i (w)  taking the form of Eq. (4.4). Thus, in Figure 3 we have plotted 
nkw versus 1 - nz + kZ, the former quantity being proportional to 
al(w) and the latter to tl(m). 

The most striking thing to note is at  the high frequency end of this 
plot, which is near the origin, one can draw a straight line through the 
origin passing through the observed points in this limit. Taking the 
relaxation time z from Inagaki et al. as z = 1.6 x sec, it is easily 
verified that this slope of the o1 - t l  plot is near to 4nt as predicted by 

Relation between +(a) and cl(w) in liquid Na 

I I I 
0 10 20 30 40 50 60 70 

1 - € ,  

Figure3 Experimental data on the optical constants n and k for liquid metal Na as 
measured by Inagaki et al. 

Actual plot is of nko versus 1 - nz + k2,  the former quantity being essentially the 
real part crl(w) of the conductivity and the latter being 1 - el(o), with t l  the real part of 
the dielectric constant. 

This plot is motivated by Eqs (3.14) and (4.4). 
The straight line drawn is a Drude-Zener-like prediction at frequencies such that 

f,(o) is Eq. (3.14) is negligible. However, points shown near the origin of the Figure 
reflect remnants of 'interband' transitions in the liquid metal, and the theory does not 
incorporate these. 
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DIELECTRIC FUNCTION OF A LIQUID METAL 65 

Eqs (3.14) and (4.4) for w2r2 9 1. Since, in the high frequency limit, 
f , (w)  0, one is recovering the Drude-Zener relation between 0 ,  and 
c l .  However, since according to Eq. (4.4), fl(w) + constant for w2r2 4 
1, at the low frequency end the prediction is another parallel straight 
line, having the same slope, but when extrapolated back to E ,  = 0 cuts 
the crl axis at the value - h(r, n, 7’). The ‘deviation’ from the ‘Drude 
-Zener’ line drawn in Figure 3 is compatible with this prediction. 
However, we have no doubt that the calculation of h from first 
principles is a task well beyond the theoretical framework used in this 
paper. 

To see the basic reason for this, let us return to Eq. (3.14), substitute 
f l ( w )  from Eq. (4.4), and let w + 0. Then we find 

h = t , ( O ,  0)  - 1 - ~TCCT,(O, 0). (6.1) 
It is, of course, well known that the D.C. conductivity ol(O, 0) of a liquid 
metal is connected intimately with the short-range ionic order as 
reflected in the liquid structure factor S(4).  Furthermore, while, as 
Inagaki et al. demonstrate, the experimental data for c , ( O , o )  is well 
reproduced by the plasma formula 

over a wide range of frequencies, this formula must become mean free 
path limited for sufficiently low frequencies. Thus, h turns out in Na to 
be a small difference between large quantities, each of which must, in 
turn, be sensitive to the details of the liquid structure and also the 
nature of the Fermi surface blurring. 

6.2 Dispersion of plasmon 

The success of the simple plasma formula (6.2) in liquid Na in 
representing the experimentally determined c,(O,  w )  over a substantial 
frequency range has prompted us to conclude this section by presenting 
the results of a simple calculation of the way the plasmon dispersion 
relation wp(4) and more importantly the plasmon damping was affected 
by mean free path, or equivalently finite relaxation time, effects. 

However, although the main structure of the present paper has 
hinged on introducing Fermi surface blurring into the Lindhard 
formula, available evidence, including the success of the formula (6.2), 
points to the fact that the main effect in determining the dispersion 
relation 

c1(49 w p ( d )  = 0 (6.3) 
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66 N. H. MARCH A N D  B. V. PARANJAPE 

from Eqs (3.1) and (3.2) is the presence of z in the denominator. Thus, 
we can, in determining o,(q), simplify the present approach, neglect the 
blurring of the Fermi surface in the numerator of Eq. (3.2), when we are 
led back to the treatment of Mermin3. In the Appendix, we have set out 
the detailed way in which this can be used to find o,(q) from Eq. (6.3). 
Then equations (A.l) and (A.2) have been solved numerically and the 
damping of o,(q) vs t- ’ is displayed in Figure A3. 

7 SUMMARY AND DIRECTIONS FOR FUTURE WORK 

The experimental results on the optical constants n and k for liquid Na 
are in general accord with Eq. (3.14) with fi(o) having the frequency 
dependence shown in Eq. (4.4). We have emphasized, however, that the 
function h(r, n, T )  in Eq. (4.4) depends crucially on the liquid structure, 
as well as on the detailed nature of the Fermi surface blurring. Equation 
(4.3) seems not to reflect this structure in a sufficiently profound 
manner, even though both f(t) and &/ak will be structure dependent. 

Therefore, it may well prove important eventually to transcend the 
Lindhard expression (3.1), and to work directly with the more basic 
relation (5.8) in relating crl(w) and cI(o). In this context, it is clear from 
Eqs (5.1) and (5.3) that experimental measurement of the frequency 
dependence of both crl(w) and c1(o) over a common range of frequency 
will allow the quantity lim,,o l/q2Sii(q, w )  = s(w) = [T(w)]-’ to be 
extracted. Since one of the aims of the theory of liquid metals is to 
predict electronic properties from observed structure, both the static 
structure factor S(q) and the dynamic structure factor Sii(q, w )  of the 
ions, it is clearly of interest to establish some of the features of Sii(q, w )  
beyond those presently known from neutron inelastic scattering. For 
liquid Rb, for example, such neutron studies by Copley and Rowel2 
reveal collective modes, which were subsequently found in the com- 
puter experiments of RahmanI3. It needs no emphasis that it would be 
valuable to connect such information with studies of ul (w)  and cI(w) 
over the widest possible frequency range on this particular liquid metal. 
As discussed by Tosi et al. the D.C. conductivity is, in fact, related to 
s(w) defined above in the limit w -, 0. 

Related to the above discussion, we note also that use of Eq. (6.2) in 
the form w2 = 02(tl) in Eqs (3.14) and (4.4) would yield u1 = (rl(cl) 
and the utility of such a relationship is exemplified by Figure 3. 
Comparison with Eq. (5.8) would then imply that gT must be a 
function of c 1  and it would be of obvious interest to confront this 
prediction of the present work with experiment when independent 
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DIELECTRIC FUNCTION O F  A LIQUID METAL 67 

measurements of tl(w) and limq+,, q-’Sii(q,  w )  = s(w) become available 
for the same liquid metal in overlapping ranges of frequency. 

The functional relation between ol(w) and cl(w) proposed above is 
quite different, of course, from the exact connection between nk and 
n2 - k2 given by the Kramers-Kronig relation. It would, in the future 
when the optical constants n and k become available for a particular 
liquid metal over a fuller frequency range, be of interest to insert 
[tl(O, w )  - fl(w)] appearing in Eq. (3.14), with fl(w) given by Eq. (4.4), 
into such a Kramers-Kronig integral and hence to explore the depen- 
dence of al(o) thereby obtained on the choice of h ( ~ ,  n, T). As already 
exemplified in Eq. (6.1), we strongly suspect that h must turn out to be 
much smaller than implied by a formula such as Eq. (4.3). 

References 

1. A. Ferraz and N. H. March, Phys. Chem. Liquids, 8, 271 (1979). 
2. C. R. Leavens, A. H. MacDonald, R. Taylor, A. Ferraz and N. H. March, Phys. Chem. 

3. N. D. Mermin, Phys. Rev., Bl, 2362 (1970). 
4. W. Gotze, J.  Phys., C12, 1279 (1979). 
5. R. Taylor, J.  Phys., F8, 1699 (1978). 
6. D. J. W. Geldart and R. Taylor, Can. J. Phys., 48, 167 (1970). 
7. See, for example, N. H. March and M. P. Tosi, Coulomb Liquids (Academic: New 

8. L. Reatto, D. Levesque and J. J. Weis, Phys. Rev., A33, 3451 (1986). 
9. M. P. Tosi, M. Parrinello and N. H. March, Nuovo Cimento B23, 135 (1974). 

10. H. Hinkelmann, Phys. Lett., 33A, 479 (1970). 
11. T. Inagaki, E. T. Arakawa, R.  D. Birkhoff and M. W. Williams, Phys. Rev., B13,5610 

12. J. R. D. Copley and J. M. Rowe, Phys. Rev. Letts., 32, 49 (1974). 
13. A. Rahman, Phys. Rev., A9, 1667 (1974). 

Liquids, 11, 115 (1981). 

York), 1984. 

( 1976). 

Appendix Method of calculation of plasmon properties 
as function of phenomenological relaxation 
time 

For reasons outlined in the text, we shall make direct use of Mermin’s 
formula for t (q ,  o), in which a relaxation time T is introduced. Because 
we are concerned with high-frequency (plasmon) properties, the limita- 
tion of the Mermin formula, referred to in the text, that it does not 
reflect the blurring of the Fermi surface in the static limit w = 0 is 
evidently not serious for the present application. 
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DIELECTRIC FUNCTION OF A LIQUID METAL 69 

Denoting now the free-electron Lindhard dielectric function without 
Fermi surface blurring by co(q, w), Mermin's result takes the form 

Because the plasmon is essentially a long wavelength electronic 
excitation, we shall specify cl(q, w )  for small q only. 

To do so, we return to Eqs (3.1) and (3.2), substitute tk = h2k2/2m 
and fk by the usual Fermi step function (i.e. T = 0 and no blurring due 
to disorder scattering). In the small q limit, exploiting the fact that the 

I I I I 
-2 - 1  0 1 2 

Figure A2 Energy loss function Im l/K(q, w )  plotted as a function of w for fixed q 
(q = lo8, and lo9 m-  '). Note the peaks at the plasmon frequency wp have non-zero 
width because of the finite relaxation time T. As T + co, one recovers a delta function 
peak at w p .  
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70 N. H. MARCH AND B. V. PARANJAPE 

derivative of the Fermi function is a delta function at the Fermi surface, 
we obtain, with p = q . k/qk, 

Clearly cO(q,w + i/t) required in Eq. ( A l )  is to be obtained from Eq. 
(3.1) by putting H = Ho(q, o + i/z). 

With this form for co(q, w + i / t ) ,  Eq. ( A l )  has been used to plot the 
real and imaginary parts of c(q, w) as a function of w for fixed 4 in Eq. 
( A l )  and these are shown in Figure A1 for a value of z appropriate to 
liquid Na. 

From the real part of this plot, it turns out that the plasmon 
dispersion, corresponding to c,(q, o) = 0, is negligibly affected by t, and 
indeed by a shorter relaxation time by an order of magnitude. Thus, Eq. 
( A l )  shows no changes of significance from the usual Lindhard result 
for the plasmon dispersion. 

2 . 0 -  

1 .5 -  

X 
t- 1.0- 

0 . 5 -  

0 . o - =  I I 
0 .oo 0.25 0 .so 0 .75  1 .oo 

FigureA3 Total width at half maximum peak height from Figure A2, plotted as a 
function of relaxation time T. 
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DIELECTRIC FUNCTION OF A LIQUID METAL 71 

However, as Figure A1 shows, the effect on c2 of T is qualitative. 
Whereas with 7 + co, t2 vanishes for w > v f q ,  v f  being the Fermi 
velocity, there is now a 'tail' on c2  for w greater than this value. 

Therefore, we have also studied the energy loss function Im l/c(q, o) 
from the result (Al).  This function is plotted in Figure A2 for T = 

sec. It will be seen that while, as already mentioned, the plasma 
frequency is not affected by finite z of physical magnitudes, the delta 
function peak in the loss function at w,(q) is broadened because of the 
collisions built in through finite 7. The total width of the peak at half 
maximum height is plotted against l/r in Figure A3. To date, for pure 
liquid metals we know of no data directly comparable with the damping 
of the plasmon shown in this Figure. 
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